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Abstract. Critical percolation densities have been found numerically for various systems 
of lines uniformly distributed in the plane. The average number of intersections per line 
at percolation has also been found and varies only slightly over the cases considered. It 
may therefore provide a useful rule of thumb for deciding whether a system percolates. 
An estimate of the critical percolation density from the lattice percolation probability is 
presented. Possible extensions of the techniques described to three dimensions are 
discussed. 

1. Introduction 

In a hard rock, such as granite, water flow occurs almost exclusively through fractures 
(this term is taken here to include joints, faults, fissures, etc). The pattern of fractures 
is complicated to such an extent that one cannot expect to model it fully. Some sort 
of statistical model must be used. One way to approach the problem is to model the 
whole system (rock and fractures) by an ‘equivalent permeable medium’ characterised 
by a permeability tensor. For systems where the scale of the fractures is much less 
than the scale of interest this is a sensible approach. In granitic rocks this condition 
does not hold. The distances between major fractures may be metres or tens of metres 
(Bourke et a1 1980), with the region of interest tens or hundreds of metres. So, while 
equivalent permeable medium models are widely used, this possible flaw has been 
noted (Rae and Robinson 1979). It is argued that because insufficient data on fracture 
systems exist more complicated models are not justified. Despite this, some work 
has been done on keeping more of the fractured nature of the physical system in the 
model (Wang 1980). 

In a study of fractured rock three main topics need to be investigated: firstly, 
connectivity, secondly, flow and thirdly, dispersion. Here we consider the first of these 
topics. We look at the problem of connectivity in two-dimensional fracture systems. 
From this we hope to determine the best approach to the full three-dimensional 
problem. We represent the fractures as line segments of random position with some 
specified distribution of lengths and orientations. We then ask whether flow paths 
will exist as the number of fractures per unit area increases. 

In 0 2 we show the connection with percolation theory, 0 3 describes the numerical 
method used and the computer experiments done, 0 4 gives some theoretical predic- 
tions of the results and § 5 presents the results. Section 6 presents some conclusions. 
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606 P C Robinson 

2. Percolation theory 

In percolation theory one defines a medium to be an infinite set of sites; a fluid flows 
between these sites along paths which connect certain pairs of sites (these paths are 
often called bonds). Two types of percolation model are discussed, site percolation 
and bond percolation. Normally the sites lie on a regular lattice and only bonds 
between nearest neighbours are considered. Site percolation involves a probability p 
that any site is open independently of the other sites. A path is then a sequence of 
connected open sites. In bond percolation the probability is for any bond to be open. 
A path is a sequence of sites connected by open bonds. In either case a cluster is a 
set of sites in which any two are connected by a path. It is found that a critical 
probability pc  exists so that for p < p c  only finite-size clusters exist, but for p > p c  infinite 
ones appear (Essam 1980). 

Our case is in some sense a continuum limit of the site percolation model. Our 
sites are lines which may be in any position with any length and orientation. Two 
lines are connected if they intersect. The probability becomes a density (lines per 
unit area). Because the length scale of the lines is irrelevant, we take (line 
density) x (length scale)' as the important variable. We call this N, and its critical value 
N,. 

3. Numerical determination of critical densities 

In a numerical model one can obviously not look for infinite clusters. Instead one 
looks for paths across regions which are taken as large as is practical. 

We generate lines of specified length and orientation distributions uniformly in a 
square. Percolation is said to have occurred when there is a path (cluster) from near 
one side to near the opposite side. For these evaluations 1000-2000 lines were 
generated for each run, although for one case 10 runs with around 10 000 lines were 
done to check that there was no significant effect of the finite size. Lines are generated 
one by one and a record is kept of all the clusters. Each new line can 

(i) form a new cluster (no intersections); 
(ii) join an existing cluster; 
(iii) unite two or more existing clusters. 
As soon as a cluster reaches from side to side the line generation is stopped. 
Figures 1-4 show examples of the sort of results obtained. We considered four 

cases. These were: 
(I) Constant line length; angle distributed uniformly in the range [-a, a], for a 

range of a's. 
(11) Constant line length; angle either p or -p with probability $, for a range of 

P'S. 
(111) Line length uniformly distributed in the range [lav(l - f ) ,  laV(l + f ) ]  for a range 

off 's;  angles uniformly distributed in the range [-go", 90'1. 
(IV) Line length uniformly distributed as case 111; angles -45" or 45" with 

probability f. 
In each case both N ,  and I ,  were determined, I ,  being the average number of 

intersections per line at percolation. In each case the length scale used to evaluate 
N ,  was half the average line length. 



Connectivity of fracture systems 607 

1 ' -  //*/ 
( a )  I b)  

Figure 1. ( a )  Example for constant line length, @ uniform in (-90", 90"). ( b )  Percolating 
cluster from constant line length, 8 uniform in (-90", 90") case 

( a )  i b )  

Figure 2. ( a )  Example for constant line length, 8 uniform in (-45', 45"). ( b )  Percolating 
cluster from constant line length, 8 uniform in (-45", 45") case. 

4. Theoretical predictions 

4.1. Relationship between N ,  and I ,  

It can easily be shown that in all our cases we expect to find a simple relationship 
between N ,  and I,: 

(1) I J a )  = NC(a)(2/a2)(2a -sin 2 a ) ;  
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l o )  16) 

Figure 3. ( a )  Example for line length uniform in (0,  24,,), B = *45". ( b )  Percolating cluster 
from uniform line length, 0 = *45". 

I a)  I b )  

Figure 4. ( a )  Example for line length uniform in (0 ,  2[.,), 6 uniform in (-go", 90'). ( 6 )  
Percolating cluster from uniform line length, B in (-go", 90"). 

4.2. Small-angle limit 

We can also show that for cases (I) and (11) we should find 

Nc(a 1 - Ala (1) 

(11) NJP) - BIP 

for a -+ 0; 

for p + 0 where A and B are constants. 
( 4 . 2 )  

Combining these results with ( 4 .  l), we predict 

(4 .3 )  

4.3. Distributed line lengths 

I n  cases (111) and (IV) we have a line length 1 uniformly distributed in the range 
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[lav(l - f ) ,  lav(l +f)] and define N, by (line density) x 1: where 21, = lav. This gives equal 
weight to all the lines. The effectiveness of any line depends on how many other lines 
it intersects and by how much it increases the cluster size. Both these depend on its 
length. If we take the average effectiveness of our lines and define a constant length 
line of the same effectiveness leff, we have 

f 
1 2 2  ( l + ~ ) ~ l a V ~ d c = ( l + ~ f  ) l a v a  

leff 2 1  =-= 

2f I, 
This leads us to predict that N,(1 + f2/3)  is constant, i.e. that 

(111) NJf) ="l(1 +f2/3) ;  

(IV) NJf) =Nc(0) / ( l  +f2/3). 

(4.4) 

(4.5) 

4.4. Estimate of N, for case II with angles k4.5" 

In this case we have orthogonal lines of fixed length I with A = (line density) x $1'. If 
we cover the plane with squares of side $1 orientated in the same way as the lines, 
the average number of lines centred in each square is N. If we now say that two 
squares are connected if a line centred in one intersects a line centred in the other, 
we have a regular lattice percolation problem. By postulating that percolation for the 
regular lattice occurs at the same time as percolation among the lines, we have an 
estimate for N,. In the appendix this calculation is done and an estimate N,= 1.54 
is obtained. 

5. Results 

In each case 30 runs were done. 
(I) The average N, and I, with their standard deviations are presented in figure 

5. The predicted N, for constant I ,  = 3.706 is also shown, as derived from (4.1) (I). 

0 '1. 0 20 40 60 80 

U (degrees1 

Figure 5. N ,  and I, versus a for case I. 
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For the a =90° case we also did 10 runs with around 10 000 lines. These gave 
N ,  = 1.45 and I, = 3.69, only slightly less than the results for the smaller runs. 

(11) The average N ,  and I ,  with their standard deviations are presented in figure 
6. The predicted N ,  for constant I ,  = 3.28 is also shown, as derived from (4.1) (11). 

3 -  

Y 2 -  

01 1 ' I I I . .  1 1 ,  lo 
0 10 20 30 CO 

P (degrees) 

Figure 6. N ,  and I, versus p for case 11 

(111) The average N ,  and I, with their standard deviations are presented in figure 
7. The predicted N ,  and I ,  for NJO) = 1.488 are also shown, as derived from (4.5) 
(111) and (4.1) (III), 

0 t  1 I lo 
0 0 25 05 0 75 10 

f 

Figure 7. N ,  and Z, versus f for case 111. 

(IV) The average N ,  and I, with their standard deviations are presented in figure 
8. The predicted N ,  and I ,  for NJO) = 1.616 are also shown, as derived from (4.5) 
(IV) and (4.1) (IV). 

For all cases the part of I ,  not affected by the length distribution was in the range 
3.2 to 3.8. If this holds, as might be expected, for a wide range of distributions it 
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01 1 I Io 
0 0.25 0 5  0 75 1 0  

f 

Figure 8. N ,  and I, versus f for case IV. 

could provide a useful rule of thumb for estimating critical densities. The estimate 
of critical density for the orthogonal lines can be extended to three dimensions and 
a similar rule found. 

In a study of percolation for various shapes in the plane, Pike and Seager (1974) 
give a result for case I with a = 90 degrees. They find N ,  = 1.43, I, = 3.63 when using 
a slightly different criterion for percolation in the finite region. Given these differences, 
their result agrees well with ours. 

6. Conclusions 

The critical density and critical intersection number have been found for a number 
of angle probability density functions and line length distribution functions. It has 
been shown that the critical density can be estimated from the known lattice results 
and that the behaviour for various probability distribution functions for angle and 
length can readily be predicted. 

The critical density and critical intersection number do not vary very much for 
different statistical properties. This would presumably hold in three dimensions also. 
In this case an estimate of critical density for three-dimensional systems could be 
found numerically by looking at just one case. The estimate based on regular lattice 
results could also be extended to three dimensions. 
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Appendix 

(i) Percolation probability for a square lattice with nearest-neighbour bonds proba- 
bility pE and next-nearest-neighbour bonds probability p c :  

Percolation occurs when some line in p c  v pE space is crossed. We know three points 
of this line, two from the square lattice and the result pE = p c  = 0.247. 

I (112.0)  

Y 
9 

0 1 

From these we can see that 

p E + p C  3 t 
is a good approximation to the condition. 

(ii) Evaluation of PE and pc 

Let PE'" be the probability that given a square with r lines in one direction is connected 
to an adjacent one with s lines in the other direction. The E or C superscript denotes 
an edge or corner adjacency (i.e. nearest- or next-nearest neighbour). Then the 
probability of connection 

(A21 P E / "  = 1 - (1  - QE/C)2 

where QE/C is the probability of connection between lines in specified directions, 

where pr is the probability that a square has r lines in a given direction. 
In fact 

(iN)r e-N/2 

Pr = r !  
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(iii) Estimation of Pfi and QE 

Consider unit squares A and B 

A line centred at P A  in one direction intersects one centred at PB in the other direction 
as long as xA +xB 2 1 (recall that the squares have sides equal to half the line length). 
With r lines in square A and s in square B we need maxi= l.r{xAi} + maxi=l,s{xBj} 3 1. 
This gives 

1 1 1 

dxA rxzl I sxk-;' dxB = dx rx'- ' ( l-( l  -x)')). (A51 
xe=l-x/ ,  Ix =o 

PE=[ x A = o  

Putting this in (A3) with (A4) gives 

(iv) Estimation o f  P$ and QC 

If we take as an approximation the nearest lines in the x coordinate and multiply by 
$ for the y coordinate, we get 

and 
pC=' E 

rs  2Prs 

c - ~ Q E .  Q -1 
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P C  +PE a $ 7  

i.e. 

~ Q E - ~ Q :  s i ;  
thus the critical QE occurs when 5Qt - 12QE+2 = 0; i.e. when QE = 0.180, this gives 

1 - (N/2 + l)e-”* = 0.180 

which we can solve to give 

N ,  = 1.54. 
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